Решение:
Возможные значения величины Х по условию равны вероятности pi событий Ai; вероятность возможного значения pi, очевидно, также равна pi. Таким образом, X имеет следующее распределение:
X P1 P2 … Pn
P P1 P2 … Pn
Найдем математическое ожидание:
MX=p12+p22+…+pn2. (*)
Рассматриваемые события образуют полную группу, поэтому:
P1+p2+…+pn=1.
Из дифференциального исчисления известно, что если сумма независимых переменных постоянна, то сумма квадратов этих переменных имеет наименьшее значение в случае равенства переменных. Применительно к рассматриваемой задаче это означает: сумма (*), т. е. математическое ожидание М (X), имеет наименьшее значение, если вероятности всех событий, образующих полную группу, равны между собой, что и требовалось доказать.
Возможные значения величины Х по условию равны вероятности pi событий Ai; вероятность возможного значения pi, очевидно, также равна pi. Таким образом, X имеет следующее распределение:
X P1 P2 … Pn
P P1 P2 … Pn
Найдем математическое ожидание:
MX=p12+p22+…+pn2. (*)
Рассматриваемые события образуют полную группу, поэтому:
P1+p2+…+pn=1.
Из дифференциального исчисления известно, что если сумма независимых переменных постоянна, то сумма квадратов этих переменных имеет наименьшее значение в случае равенства переменных. Применительно к рассматриваемой задаче это означает: сумма (*), т. е. математическое ожидание М (X), имеет наименьшее значение, если вероятности всех событий, образующих полную группу, равны между собой, что и требовалось доказать.