Середина M стороны AD выпуклого четырехугольника равноудалена от всех его вершин. Найдите AD, если BC=8, а углы B и C четырёхугольника равны соответственно 129° и 96°
Сумма углов любого выпуклого n-угольника равна (n-2)180, тогда сумма углов четырехугольника (4-2)180=360.
Т.е. ∠A+∠B+∠C+∠D=360
∠A+129°+96°+∠D=360°
∠A+∠D=135°
Треугольники AEB, BEC и ECD - равнобедренные, т.к. стороны AE=EB=EC=ED.
Следовательно:
∠A=∠ABE
∠EBC=∠ECB
∠ECD=∠D
Использую сумму углов четырехугольника, запишем:
∠A+∠ABE+∠EBC+∠ECB+∠ECD+∠D=360°
Используя ранее полученные равенства, запишем:
∠A+∠A+2∠EBC+∠D+∠D=360°
2∠A+2∠EBC+2∠D=360°
∠A+∠EBC+∠D=180°
135°+∠EBC=180°
∠EBC=45°
Рассмотрим треугольник EBC.
BE=CE (по условию задачи)
Следовательно, треугольник EBC равнобедренный.
По свойству равнобедренного треугольника:
∠EBC=∠ECB=45°
По теореме о сумме углов треугольника: 180°=∠EBC+∠ECB+∠BEC
180°=45°+45°+∠BEC
∠BEC=90°
Получается, что треугольник EBC не только равнобедренный, но и прямоугольный.
Тогда по теореме Пифагора:
BC2=BE2+CE2
64=BE2+CE2
Так как BE=CE, то BE2=CE^2=64/2=32
BE=CE=√32=AE=ED
AD=AE+ED=√32+√32=2√32=2√16*2=2*4√2=8√2
Ответ: AD=8√2
Т.е. ∠A+∠B+∠C+∠D=360
∠A+129°+96°+∠D=360°
∠A+∠D=135°
Треугольники AEB, BEC и ECD - равнобедренные, т.к. стороны AE=EB=EC=ED.
Следовательно:
∠A=∠ABE
∠EBC=∠ECB
∠ECD=∠D
Использую сумму углов четырехугольника, запишем:
∠A+∠ABE+∠EBC+∠ECB+∠ECD+∠D=360°
Используя ранее полученные равенства, запишем:
∠A+∠A+2∠EBC+∠D+∠D=360°
2∠A+2∠EBC+2∠D=360°
∠A+∠EBC+∠D=180°
135°+∠EBC=180°
∠EBC=45°
Рассмотрим треугольник EBC.
BE=CE (по условию задачи)
Следовательно, треугольник EBC равнобедренный.
По свойству равнобедренного треугольника:
∠EBC=∠ECB=45°
По теореме о сумме углов треугольника: 180°=∠EBC+∠ECB+∠BEC
180°=45°+45°+∠BEC
∠BEC=90°
Получается, что треугольник EBC не только равнобедренный, но и прямоугольный.
Тогда по теореме Пифагора:
BC2=BE2+CE2
64=BE2+CE2
Так как BE=CE, то BE2=CE^2=64/2=32
BE=CE=√32=AE=ED
AD=AE+ED=√32+√32=2√32=2√16*2=2*4√2=8√2
Ответ: AD=8√2