Найдите четырёхзначное число, крат­ное 22, про­из­ве­де­ние цифр ко­то­ро­го равно 40. В от­ве­те ука­жи­те какое-нибудь одно такое число.

gavul79 gavul79    2   17.04.2019 03:20    1

Ответы
Клита Клита  17.04.2019 03:20
Чтобы число abcd де­ли­лось на 22, оно долж­но де­лить­ся и на 2, и на 11. Про­из­ве­де­ние цифр 40 можно пред­ста­вить мно­ги­ми способами, ос­но­вой ко­то­рых яв­ля­ют­ся про­из­ве­де­ния -  8*5,20*2,4*10 При­знак де­ли­мо­сти на 11: Число де­лит­ся на 11, если сумма цифр, ко­то­рые стоят на чет­ных ме­стах равна сумме цифр, сто­я­щих на не­чет­ных местах, либо от­ли­ча­ет­ся от неё на 11. Таким образом, a+c=b+d или a+c=b+d+11 или a+c+11=b+d. Кроме того, раз число де­лит­ся на 2, то оно долж­но быть четным. Со­глас­но пе­ре­чис­лен­ным при­зна­кам можно по­до­брать сле­ду­ю­щие числа: 5412, 5214, 1452, 1254, 1518
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Другие предметы