Дано: градусов - вписанный угол
Пусть - центр данной окружности
Тогда - радиус данной окружности и тогда по свойству касательной
градусов-------(*)
Рассмотрим треугольник . Этот треугольник равнобедренный ( как радиусы). Поэтому по признаку равнобедренного треугольника имеем:
------(1)
где - градусная мера центрального угла
Из свойства вписанного угла имеем:
градусов--------(2)
Подставим в (1) вместо его значение:
угол градусов-------(3)
По основному свойству измерения углов найдем искомый угол:
--------(4)
C учетом равенств (*) и (3) равенство (4) примет вид:
градусов
Дано:
градусов - вписанный угол
Пусть
- центр данной окружности
Тогда
- радиус данной окружности и тогда по свойству касательной
Рассмотрим треугольник
. Этот треугольник равнобедренный (
как радиусы). Поэтому по признаку равнобедренного треугольника имеем:
где
- градусная мера центрального угла
Из свойства вписанного угла имеем:
Подставим в (1) вместо
его значение:
угол
градусов-------(3)
По основному свойству измерения углов найдем искомый угол:
C учетом равенств (*) и (3) равенство (4) примет вид: