Определение размеров небесных тел и расстояний до них в Солнечной системе
1. Каким образом греческий учёный Эратосфен определил размеры Земли?
Идея Эратосфена заключается в следующем. На одном и том же географическом меридиане земного шара выберем две точки $O_1$ и $O_2.$ Обозначим длину пути меридиана $O_1O_2$ через $l,$ а её угловое значение через $n$ (в градусах). Тогда длина пути $1°$ меридиана $l_0$ будет равна:
$$l_0=\dfrac{l}{n},$$
а длина всей окружности меридиана:
$$L=360°·l_0=\dfrac{360°·l}{n}=2\pi R,$$
где $R$ — радиус земного шара. Отсюда $R=\dfrac{180°·l}{\pi n}.$
2. Как определяют длину дуги меридиана триангуляционным методом?
Длина дуги определяется путём вычислений, требующих измерения только сравнительно небольшого расстояния — базиса и ряда углов. По обе стороны дуги $O_1O_2$, длину которой необходимо определить, выбирается несколько точек $A, B, C, ...$ на взаимных расстояниях до 50 км с таким расчётом, чтобы из каждой из них были видны по меньшей мере две другие точки.
Длину базиса очень тщательно измеряют специальными мерными лентами. Измеренные углы в треугольниках и длина базиса позволяют по тригонометрическим формулам вычислить стороны треугольников, а по ним — длину дуги $О_1О_2$ с учётом её кривизны.
3. Что понимают под горизонтальным параллаксом?
Определение расстояний до тел Солнечной ситсемы основано на измерении их горизонтальных параллаксов. Горизонтальный параллакс — угол $p,$ под которым со светила виден радиус Земли, перпендикулярный к лучу зрения.
4. Как определить расстояние до светила, зная его горизонтальный параллакс?
Зная горизонтальный параллакс светила, можно определить его расстояние $D.$ Расстояние до светила $D=S=\dfrac{R_⊕}{\sin p},$ где $R_⊕$ — радиус Земли. Приняв $R_⊕$ за единицу, можно выразить расстояние до светила в земных радиусах.
5. Что такое астрономическая единица?
Для измерения расстояний в пределах Солнечной системы используют астрономическую единицу (а.е.), которая равна среднему расстоянию Земли от Солнца(1 а.е. ≈ 149 600 000 км).
6. на каком расстоянии от Земли находится небесное тело, если его горизонтальный параллакс равен 1''?
Для нахождения расстояния применим формулу:
$$D=\dfrac{206265''}{p''}R_⊕.$$
Приняв радиус Земли $6371\, км,$ получим $D=1\, 314\, 114\, 315\, км,$ или $8.8\, а.е.$
7. В чём состоит радиолокационный метод определения расстояний до небесных тел?
Расстояние до объекта по времени прохождения радиолакационного сигнала можно определить по формуле $S=\dfrac{1}{2}ct,$ где $S$ — расстояние до объекта; $c$ — скорость светы; $t$ — время прохождения сигнала до объекта и обратно.
8. Определите линейный радиус луны, если во время наблюдений стало известно, что её горизонтальный параллакс в это время равен $57',$ а угловой радиус — $15,5'.$ Радиус Земли принять равным $6400$ км.
Определение размеров небесных тел и расстояний до них в Солнечной системе
1. Каким образом греческий учёный Эратосфен определил размеры Земли?
Идея Эратосфена заключается в следующем. На одном и том же географическом меридиане земного шара выберем две точки $O_1$ и $O_2.$ Обозначим длину пути меридиана $O_1O_2$ через $l,$ а её угловое значение через $n$ (в градусах). Тогда длина пути $1°$ меридиана $l_0$ будет равна:
$$l_0=\dfrac{l}{n},$$
а длина всей окружности меридиана:
$$L=360°·l_0=\dfrac{360°·l}{n}=2\pi R,$$
где $R$ — радиус земного шара. Отсюда $R=\dfrac{180°·l}{\pi n}.$
2. Как определяют длину дуги меридиана триангуляционным методом?
Длина дуги определяется путём вычислений, требующих измерения только сравнительно небольшого расстояния — базиса и ряда углов. По обе стороны дуги $O_1O_2$, длину которой необходимо определить, выбирается несколько точек $A, B, C, ...$ на взаимных расстояниях до 50 км с таким расчётом, чтобы из каждой из них были видны по меньшей мере две другие точки.
Длину базиса очень тщательно измеряют специальными мерными лентами. Измеренные углы в треугольниках и длина базиса позволяют по тригонометрическим формулам вычислить стороны треугольников, а по ним — длину дуги $О_1О_2$ с учётом её кривизны.
3. Что понимают под горизонтальным параллаксом?
Определение расстояний до тел Солнечной ситсемы основано на измерении их горизонтальных параллаксов. Горизонтальный параллакс — угол $p,$ под которым со светила виден радиус Земли, перпендикулярный к лучу зрения.
4. Как определить расстояние до светила, зная его горизонтальный параллакс?
Зная горизонтальный параллакс светила, можно определить его расстояние $D.$ Расстояние до светила $D=S=\dfrac{R_⊕}{\sin p},$ где $R_⊕$ — радиус Земли. Приняв $R_⊕$ за единицу, можно выразить расстояние до светила в земных радиусах.
5. Что такое астрономическая единица?
Для измерения расстояний в пределах Солнечной системы используют астрономическую единицу (а.е.), которая равна среднему расстоянию Земли от Солнца(1 а.е. ≈ 149 600 000 км).
6. на каком расстоянии от Земли находится небесное тело, если его горизонтальный параллакс равен 1''?
Для нахождения расстояния применим формулу:
$$D=\dfrac{206265''}{p''}R_⊕.$$
Приняв радиус Земли $6371\, км,$ получим $D=1\, 314\, 114\, 315\, км,$ или $8.8\, а.е.$
7. В чём состоит радиолокационный метод определения расстояний до небесных тел?
Расстояние до объекта по времени прохождения радиолакационного сигнала можно определить по формуле $S=\dfrac{1}{2}ct,$ где $S$ — расстояние до объекта; $c$ — скорость светы; $t$ — время прохождения сигнала до объекта и обратно.
8. Определите линейный радиус луны, если во время наблюдений стало известно, что её горизонтальный параллакс в это время равен $57',$ а угловой радиус — $15,5'.$ Радиус Земли принять равным $6400$ км.
Дано:
$p = 57',$
$ρ = 15.5',$
$R_З = 6400\, км.$
$R - ?$
Найдём расстояние $D$ до Луны:
$D=\dfrac{R_З}{\sin p};$ $D=\dfrac{6400}{\sin 0.95°} \approx 3.86 · 10^5\, км.$
Вычислим линейный радиус:
$R=D·\sin ρ;$ $R = 3.86 · 10^5 · \sin 0.26° \approx 1752\, км.$
ответ: $1752\, км.$
Объяснение:
Вот так както!