Число всех возможных способов расположения карт в колоде равно 32! Чтобы подсчитать число благоприятных исходов, сначала представим себе, что четыре туза располагаются каким-то образом один за другим и склеиваются между собой так, что они составляют одну карту (неважно, что она оказалась толще, чем все остальные).
В полученной колоде стало (32 – 4 + 1 = 29) карт. Карты в этой колоде можно расположить числом способов, равным 29! Количество всех благоприятных исходов получается, если это число умножить на 4! – число возможных способов упорядочения четырёх тузов. Отсюда получаем ответ задачи = 29!*4!/32! = 1/35960
В полученной колоде стало (32 – 4 + 1 = 29) карт. Карты в этой колоде можно расположить числом способов, равным 29! Количество всех благоприятных исходов получается, если это число умножить на 4! – число возможных способов упорядочения четырёх тузов. Отсюда получаем ответ задачи = 29!*4!/32! = 1/35960