Из 1-ой урны, содержащей 5 белых и 3 черных шара наугад переложили 2 шара во 2-ую урну, содержащую 2 белых и 6 черных шаров. Затем из 2-ой урны наугад извлекли 1 шар.

ilya429 ilya429    2   17.04.2019 03:10    23

Ответы
artem877 artem877  17.04.2019 03:10

Решение.
1) Событие А - извлеченный из 2-ой урны шар оказался белым. Рассмотрим следующие варианты наступления этого события.
а) Из первой урны во вторую положили два белых шара: P1(бб) = 5/8*4/7 = 20/56.
Всего во второй урне 4 белых шара. Тогда вероятность извлечения белого шара из второй урны равна P2(4) = 20/56*(2+2)/(6+2) = 80/448
б) Из первой урны во вторую положили белый и черный шары: P1(бч) = 5/8*3/7+3/8*5/7 = 30/56.
Всего во второй урне 3 белых шара. Тогда вероятность извлечения белого шара из второй урны равна P2(3) = 30/56*(2+1)/(6+2) = 90/448
в) Из первой урны во вторую положили два черных шара: P1(чч) = 3/8*2/7 = 6/56.
Всего во второй урне 2 белых шара. Тогда вероятность извлечения белого шара из второй урны равна P2(2) = 6/56*2/(6+2) = 12/448
Тогда вероятность того, что извлеченный из 2-ой урны шар оказался белым равна:
P(A) = 80/448 + 90/448 + 12/448 = 13/32

2) Шар извлеченный из 2-ой урны оказался белым, т.е. полная вероятность равна P(A)=13/32.
Вероятность того, что во вторую урну были переложены шары разного цвета (черный и белый) и был выбран белый: P2(3) = 30/56*(2+1)/(6+2) = 90/448
P = P2(3)/ P(A) = 90/448 / 13/32 = 45/91

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Другие предметы