Докажите, что √(a+c)(b+d) ≥ √ab + √cd, если а > 0, b > 0, c > 0, d > 0.

Alisher42Life Alisher42Life    3   17.04.2019 03:30    4

Ответы
gbafujhobr gbafujhobr  17.04.2019 03:30
Возведем обе части в квадрат: √((a+c)(b+d))^2 = (а + с)(b + d) = аb + ad + bс + cd; (√ab + √cd)^2 = ab + cd + 2√abcd;
и так как ad + bс ≥ 2√abcd => √((a+c)(b+d))2 ≥ (√ab + √cd)^2 => (a + с)(b + d) ≥ √аb + √cd.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Другие предметы