Рассмотрим ориентированный граф, вершины которого – шахматисты, а стрелки ведут от выигравшего к проигравшему. Условие означает, что для каждого шахматиста есть другой, до которого можно добраться только по 11 стрелкам (это, в частности означает, что от каждого шахматиста можно добраться до любого другого). Рассмотрим такой путь: A1 выиграл у A2, A2 – у A3, ..., A11 – у A12. Заметим, что Ai (1 < i < 12) не мог выиграть у A1 (иначе от A2 можно было бы добраться до каждого не более чем по 10 стрелкам). Но кто-то у A1 выиграл (иначе до A1 вообще нельзя было бы добраться), значит, это – A12. Как и выше, показываем, что в полученном цикле каждый мог выиграть только у следующего.
Следовательно, результативных партий всего 12, а ничьих – 12•11 : 2 – 12 = 54.
Ответ. 54 ничьих.
Следовательно, результативных партий всего 12, а ничьих – 12•11 : 2 – 12 = 54.
Ответ. 54 ничьих.