Відповідь:
1. Щоб звільнитися від ірраціональності в знаменнику дробу 2/(5√8), ми можемо помножити і чисельник, і знаменник на √8:
2/(5√8) = (2√8)/(5√8 * √8) = (2√8)/(5 * 8) = (2√8)/40 = √8/20
Отже, після спрощення, отримуємо дріб √8/20.
2. Щоб звільнитися від ірраціональності в знаменнику дробу 6/(√10 - 2), ми можемо використати метод множників спільного знаменника. Множимо чисельник і знаменник на спряжений вираз до √10 - 2, тобто √10 + 2:
6/(√10 - 2) = 6(√10 + 2)/((√10 - 2)(√10 + 2))
= 6(√10 + 2)/(√10^2 - 2^2)
= 6(√10 + 2)/(10 - 4)
= 6(√10 + 2)/6
= √10 + 2
Отже, після спрощення, отримуємо дріб √10 + 2.
Відповідь:
1. Щоб звільнитися від ірраціональності в знаменнику дробу 2/(5√8), ми можемо помножити і чисельник, і знаменник на √8:
2/(5√8) = (2√8)/(5√8 * √8) = (2√8)/(5 * 8) = (2√8)/40 = √8/20
Отже, після спрощення, отримуємо дріб √8/20.
2. Щоб звільнитися від ірраціональності в знаменнику дробу 6/(√10 - 2), ми можемо використати метод множників спільного знаменника. Множимо чисельник і знаменник на спряжений вираз до √10 - 2, тобто √10 + 2:
6/(√10 - 2) = 6(√10 + 2)/((√10 - 2)(√10 + 2))
= 6(√10 + 2)/(√10^2 - 2^2)
= 6(√10 + 2)/(10 - 4)
= 6(√10 + 2)/6
= √10 + 2
Отже, після спрощення, отримуємо дріб √10 + 2.