Достаточные условия экстремума: если при переходе через критическую точку производная непрерывной функции меняет знак на противоположный, то имеем экстремум функции в этой точке.
Если точка с абсциссой меняет знак с "+" на "–" (двигаясь в направлении увеличения ), то — точка максимума, а если с "–" на "+" , то — точка минимума.
Необходимые условия экстремума:
Имеем две критические (стационарные) точки:
и 
Достаточные условия экстремума: если при переходе через критическую точку производная непрерывной функции меняет знак на противоположный, то имеем экстремум функции в этой точке.
Если точка с абсциссой
меняет знак с "+" на "–" (двигаясь в направлении увеличения
), то
— точка максимума, а если с "–" на "+" , то
— точка минимума.
Из промежутка
выберем, например,
и имеем: 
Из промежутка
выберем, например,
и имеем: 
Имеем максимум в точке с абсциссой
Из промежутка
выберем, например,
и имеем: 
Имеем минимум в точке с абсциссой
ответ: