Знайти перший додатній член арифметичної прогресії -10.2, -8.3

Atax1a1 Atax1a1    1   31.07.2019 16:00    0

Ответы
simkinaalinoschka simkinaalinoschka  28.09.2020 18:23

Найти первый положительный член арифметической прогрессии -10,2; -8,3; ...

Арифметическая прогрессия - это последовательность чисел, каждый член которой, начиная со второго, равен предыдущему, увеличенному на одно и тоже число (разность арифметической прогрессии, обозначается d).

По условию а₁ = -10,2, a₂ = -8,3, тогда d = a₂ - a₁ = -8,3 - (-10,2) = -8,3 + 10,2 = 10,2 - 8,3 = 1,9.

an = a₁ + d(n - 1) - формула n-го члена

По условию аn > 0, поэтому решим получившееся неравенство

-10,2 + 1,9(n - 1) > 0,

-10,2 + 1,9n - 1,9 > 0,

1,9n - 12,1 > 0,

1,9n > 12,1,

19n > 121,

n > 121/19 = 6 целых 7/19.

Значит, n = 7.

Найдем а₇:

а₇ = -10,2 + 1,9(7 - 1) = -10,2 + 1,9 · 6 = -10,2 + 11,4 = 11,4 - 10,2 = 1,2.

ответ: 1,2.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра