Знайдіть область визначення функції f(x)=√2x^2+12

ева19961 ева19961    1   21.08.2019 16:10    0

Ответы
krivonogikhlyuba krivonogikhlyuba  08.09.2020 21:30
Я не очень говорю по-украински, хотя немного понимаю. Надеюсь, ты понимаешь по-русски, если нет простить.

Не совсем понятна запись функции, так всегда с корнями. Напишу оба варианта, в зависимости от прочтения.
1. √(2)*x^2+12.
Это типичная квадратичная функция. Коэффициент при x^2 =√(2), что явно больше нуля (значит, ветви параболы направлены вверх), а минимальное значение функция принимает при x=(-b)/(2a)), где b - коэффициент при x, а a - коэффициент при x^2. Итого, функция принимает минимальное значение при 0, а само минимальное значение (подставим 0 вместо x) - это 12.
[12;+∞)
2. Под корнем всё - 2x^2. (√(2x^2)+12)
Тогда можно переформулировать - квадратный корень из квадарата переменной есть модуль (абсолютное значение) переменной (по опр.квадратного.корня: на x возвращается такое неотрицательное y, что y^2=x).
Тогда график - линейная функция под модулем. Минимальное значение модуля любой переменной - 0. Максимум сверху неограничен.
[0;+∞)
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра