Із точки до площини проведено дві похилі, довжини яких відносяться як 3: 4. їх проекції 9 см і 16 см. знайти відстань від точки до площини. іть будь ласкка: )
по построению получаются 2 прямоугольных треугольника с общим катетом. Т.к. расстояние от точки до плоскости - перпендикуляр к данной плоскости. По теореме Пифагора составляем уравнение, где длина одной наклонной 3х, а второй 4х.
9x^2 - 81 = 16x^2 - 256
7x^2 = 175
x=5. Значит длина одной из наклонных = 15. Снова по теореме Пифагора находим искомое расстояние: 225 - 81 = 144 Следовательно, расстояние = 12
по построению получаются 2 прямоугольных треугольника с общим катетом. Т.к. расстояние от точки до плоскости - перпендикуляр к данной плоскости. По теореме Пифагора составляем уравнение, где длина одной наклонной 3х, а второй 4х.
9x^2 - 81 = 16x^2 - 256
7x^2 = 175
x=5. Значит длина одной из наклонных = 15. Снова по теореме Пифагора находим искомое расстояние: 225 - 81 = 144 Следовательно, расстояние = 12