Взяли две несократимые дроби. Знаменатель первой из них равен 4600, а второй – 7900. Эти две дроби сложили. Какой наименьший знаменатель мог оказаться у дроби, равной этой сумме, после её сокращения?
Пусть числитель одной дроби х, другой у. значит. х взаимно простой 46, а у с 79, а числитель суммы взаимно прост с 79х+46у.
с 46=2*23 и 79
знаменатель до сокращения 2*23*79*100=2³*23*79*5², а после сокращения знаменатель будет больше или равен 2³*23*79, т.е. наименьшим он будет, есл будет равен 2³*23*79=14536
Объяснение:
Вообще, если оба числителя 0, то наименьшего значения знаменателя не существует.
Если числители могут быть отрицательными, то картина следующая
Знаменатель не меньше чем -46*79*100 и равен в случае если дробь S несократима. Такое происходит, например, при a=1, b=2
А если имеется в виду, что знаменатель должен быть наименьший по модулю, то надо решать так
Пусть числитель одной дроби х, другой у. значит. х взаимно простой 46, а у с 79, а числитель суммы взаимно прост с 79х+46у.
с 46=2*23 и 79
знаменатель до сокращения 2*23*79*100=2³*23*79*5², а после сокращения знаменатель будет больше или равен 2³*23*79, т.е. наименьшим он будет, есл будет равен 2³*23*79=14536