Согласно основному тригонометрическому тождеству: 1+(tg a)^2 =(cos a)^(-2) (cos a)^2=1/(1+(tg a)^2)=1/(1+(2,4)^2)=1/(1+5,76)=1/6,76 cos a=1/2,6=5/13>0, т.к. a-угол 1-ой четверти tg a = sin a/ cos a 2,4 = sin a/ (1/2,6) sin a = 2,4*(1/2,6)=2,4/2,6=12/13 По формуле cos(a+pi/3)=cos a*cos pi/3 - sin a*sin pi/3 = cos a*(1/2) - sin a*(3^0.5)/2=5/13*(1/2) - 12/13*(3^0.5)/2 = 5/26 - 12*(3^0.5)/26
1+(tg a)^2 =(cos a)^(-2)
(cos a)^2=1/(1+(tg a)^2)=1/(1+(2,4)^2)=1/(1+5,76)=1/6,76
cos a=1/2,6=5/13>0, т.к. a-угол 1-ой четверти
tg a = sin a/ cos a
2,4 = sin a/ (1/2,6)
sin a = 2,4*(1/2,6)=2,4/2,6=12/13
По формуле
cos(a+pi/3)=cos a*cos pi/3 - sin a*sin pi/3 = cos a*(1/2) - sin a*(3^0.5)/2=5/13*(1/2) - 12/13*(3^0.5)/2 = 5/26 - 12*(3^0.5)/26