Вычислите: 3cos в квадрате альфа-6+3 sin в квадрате альфа; при cos альфа=0,3

ольга1723 ольга1723    1   02.06.2019 15:30    3

Ответы
nastya2735 nastya2735  03.07.2020 10:46
(sin^2a+3cos^2a)^2+(cos^2a-3sin^2a)^2=(1+2cos^2a)^2+(4cos^2a-3)^2==1+4cos^4a+4cos^2a+16cos^4a+9-24cos^2a=20cos^4a-20cos^2a+10==10(2cos^4a-2cos^2a+1)=10*(2cos^4a-cos2a)x/y=2y/x=0,5(4y^2-3xy+x^2)/(x^2-xy+y^2)=y^2[4-3x/y+(x/y)^2]/x^2[1-y/x+(y/x)^2]==0,25*[4-6+4]/[1-0,5+0,25]=0,5/0,75=2/3
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра