Найдём границы интегрирования. для этого решим систему: у = 4/х, у = 5-х 4/х = 5-х 4 = 5х -х^2 x^2 -5x +4 = 0 по т. Виета корни 1 и 4 S1 = интеграл(5-х) в пределах от 1 до 4 = (5х - х^2/2) в пределах от 1 до 4 = 20 -8-5 +1/2= 7,5 S2 = интеграл(4/х) в пределах от 1 до 4 = lnx в пределах о 1 до 4 = ln4 - ln1= lg4 = 2ln2 S фиг. = 7,5 - 2ln2
4/х = 5-х
4 = 5х -х^2
x^2 -5x +4 = 0
по т. Виета корни 1 и 4
S1 = интеграл(5-х) в пределах от 1 до 4 = (5х - х^2/2) в пределах от 1 до 4 = 20 -8-5 +1/2= 7,5
S2 = интеграл(4/х) в пределах от 1 до 4 = lnx в пределах о 1 до 4 = ln4 - ln1= lg4 = 2ln2
S фиг. = 7,5 - 2ln2