Вычислить площадь фигуры, ограниченной линиями а ) у =х² у=3х-2х² б ) у= х² у=4х+3х² за ранее ґ

Batman781 Batman781    3   18.09.2019 23:50    1

Ответы
Nikitos235555555555 Nikitos235555555555  08.10.2020 01:04
Сначала нужно выполнить чертеж (смотрите рисунок). Вообще говоря, при построении чертежа в задачах на площадь нас больше всего интересуют точки пересечения линий. Найдем точки пересечения параболы y=4-x² и прямой y=2-x. Это можно сделать двумя
Первый это посмотреть на график где линии пересекаются, второй это аналитический В данном случае можно воспользоваться графическим так как на графике ясно видно, что парабола и прямая пересекаются в точке (-1 ; 3) и (2 ; 0).Но бывают случаи, когда точкой пересечения будет, например, точка (-3,14 ; 1), тогда графически вы не сможете определить точки пересечения, в таком случае используется аналитический метод.
Попробуем применить аналитический для вычисления точек пересечения. Для этого мы приравниваем уравнения y=4-x² и y=2-x
4-x²=2-x
x²-x+2-4=0
x²-x-2=0
применим теорему Виета для решения квадратного уравнения
x₁+x₂=1
x₁x₂= -2
x₁=2
x₂= -1

 Теперь посмотрим где расположена фигура. Нам важно, какой график выше (относительно другого графика), а какой – ниже. 

Из графика видно, что выше расположена парабола y=4-x² , а ниже прямая y=2-x. 

Формула для вычисления площади:  где   это функция которая расположена выше, чем функция 

таким образом для исчисления площади нужно взять интеграл


ответ:  площадь фигуры, ограниченной линиями у = 4 - х² и у = 2 - х  равна 4.

 
ПОКАЗАТЬ ОТВЕТЫ