Вычислить: (и если можно распишите как это решается) а) log₃2+log₃4.5=; б) (lg27-lg3)/(lg15-lg5)=; в) (ln18+ln8)/2ln₂+ln3)=

black95 black95    3   28.02.2019 23:30    143

Ответы
valeriy3fors valeriy3fors  23.05.2020 17:32

б)(lg27-lg3)/(lg15-lg5)=(lg(27:3))/(lg(15:5))=\frac{lg9}{lg3}=\frac{lg3^{2}}{lg3}=\frac{2lg3}{lg3}=2

в) \frac{ln18+ln8}{2ln2+ln3}=\frac{ln18*8}{ln2^{2}+ln3}=\frac{ln144}{ln12}=\frac{2ln12}{ln12}=2

a) log₂2+log₂4,5=log₂2*4,5=log₂9 

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра