Вычисли тангенс угла наклона касательной, проведённой к графику функций f(x)=(x-9)(x2+9x+81) в точке с абсциссой x0=5

Homoeopath Homoeopath    2   20.04.2020 23:34    4

Ответы
Weltrаum Weltrаum  13.10.2020 13:26

Дана функция у = (x-9)(x²+9x+81).

Раскроем скобки: у = х³ - 9х² + 9х² - 81х + 81х - 729 = х³ - 729.

Производная y' = 3х².

y'(5) = 3*5² = 75.

Тангенс угла наклона касательной, проведённой к графику функций f(x)=(x-9)(x²+9x+81) в точке с абсциссой x0=5, равен производной функции в данной точке.

ответ: tg α = 75.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра