Квадратное уравнение приведённое, то есть, коэффициент "а" равен 1.
Для приведённого квадратного уравнения справедлива теорема Виета:
Если х₁ и х₂ – корни квадратного уравнения "x²+px+q=0", то, сумма корней равна коэффициенту "р" с противоположным знаком, т.е. "-р"; а произведение корней свободному члену "q".
Найдём дискриминант уравнения, чтобы убедиться, что корни есть, или убедиться, что их нет.
Напомню, что если D>0, то квадратное уравнение имеет два корня. Если D=0, то уравнение имеет один корень. Если D<0, то действительных корней нет.Запишем коэффициенты нашего уравнения:
а = 1 ; b = 5 ; c = 19.
Формула дискриминанта:
D = b² – 4ac. Подставим коэффициенты в формулу. Получим, D = 5² – 4 · 1 · 19 = 25 –76 = -51. Посколько D<0, то действительных корней нет, следовательно, суммы корней тоже нет.
Решим через дискриминант
а=1 b=5 c=19
D=b²-4ac
D=25-4×19=-51
Действительный корней нет
точно условия записаны верно?
Объяснение:
Квадратное уравнение приведённое, то есть, коэффициент "а" равен 1.Для приведённого квадратного уравнения справедлива теорема Виета:
Если х₁ и х₂ – корни квадратного уравнения "x²+px+q=0", то, сумма корней равна коэффициенту "р" с противоположным знаком, т.е. "-р"; а произведение корней свободному члену "q".Найдём дискриминант уравнения, чтобы убедиться, что корни есть, или убедиться, что их нет.
Напомню, что если D>0, то квадратное уравнение имеет два корня. Если D=0, то уравнение имеет один корень. Если D<0, то действительных корней нет.Запишем коэффициенты нашего уравнения:а = 1 ; b = 5 ; c = 19.
Формула дискриминанта:D = b² – 4ac. Подставим коэффициенты в формулу. Получим, D = 5² – 4 · 1 · 19 = 25 –76 = -51. Посколько D<0, то действительных корней нет, следовательно, суммы корней тоже нет.