Вычисли наибольшее и наименьшее значения функции y(x)=10⋅sinx−17⋅cosx.

незнайка2901 незнайка2901    3   26.04.2020 17:49    7

Ответы
дашик27 дашик27  03.08.2020 13:28

По формуле вс угла:

4\sin x-16\cos x= \sqrt{4^2+4^4}\sin(x-\arcsin \frac{16}{ \sqrt{4^2+4^4} } )=4 \sqrt{17} \sin(x-\arcsin\frac{4}{\sqrt{17} })4sinx−16cosx=

4

2

+4

4

sin(x−arcsin

4

2

+4

4

16

)=4

17

sin(x−arcsin

17

4

)

Поскольку синус принимает свои значения - [-1;1], то

\begin{lgathered}-1 \leq \sin(x-\arcsin\frac{4}{\sqrt{17} } )\leq 1\\ \\ -4 \sqrt{17} \leq \sin(x-\arcsin\frac{4}{\sqrt{17} }) \leq 4 \sqrt{17}\end{lgathered}

−1≤sin(x−arcsin

17

4

)≤1

−4

17

≤sin(x−arcsin

17

4

)≤4

17

Наибольшее - 4 \sqrt{17}4

17

и наименьшее - (-4 \sqrt{17} )(−4

17

)

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра