Вванне есть два крана. через первый кран вода наливается в ванну, а через второй вытекает из ванны. если открыть оба крана, то полная ванна опорожнится за 36 минут. сколько минут будет наполняться ванна, если будет открыт только первый кран, и известно, что через второй кран полная ванна опорожнится на 3 минуты быстрее, чем первый кран наполнит пустую ванну. за сколько минут второй кран опорожнит полную ванну? первый кран наполнит пустую ванну за __ минут. второй кран опорожнит полную ванну за__минут.

del9832 del9832    3   19.09.2019 18:40    4

Ответы
Dhe32 Dhe32  21.08.2020 11:56
Пусть V - объём ванны. Пусть V1 - объём воды, который поступает в ванну за 1 минуту от первого крана, а V2 - объём воды, который вытекает за 1 минуту через второй кран. Так как по условию при совместной работе двух кранов ванна опорожнится, то V2>V1. Тогда за 1 минуту совместной работы кранов объём воды в ванной уменьшится на V2-V1. По условию, (V2-V1)*36=V. Если будет работать только второй кран, то он опорожнит полную ванну за время V/V2 мин., а если будет работать только первый кран. то он наполнит ванну за время V/V1 мин. По условию, V/V1=V/V2+3. Таким образом, мы получили систему уравнений:

(V2-V1)=V/36
V/V1=V/V2+3

Подставляя выражение для V из первого уравнения во второе, приходим к уравнению 36*V2/V1-36=36-36*V1/V2+3, или 36*V2/V1+36*V1/V2-75=0. Обозначая теперь V2/V1=x и сокращая на 3, приходим к уравнению 12*x+12/x-25, которое приводится к квадратному уравнению 12*x²-25*x+12=0. Его дискриминант D=(-25)²-4*12*12=625-576=49=7², откуда x1=(25+7)/24=4/3 и x2=(25-7)/24=3/4. Но так как x=V2/V1, а V2>V1, то x>1. Значит, x=4/3, т.е. V2=4/3*V1. Тогда V2-V1=1/3*V1, и 1/3*V1*36=12*V1=V. Отсюда V/V1=12 мин, то есть первый кран наполнит ванну за 12 минут. Но тогда V/V2=V/(4/3*V1)=3/4*V/V1=3/4*12=9, то есть второй кран опорожнит ванну за 9 минут. ответ: первый кран наполнит пустую ванну за 12 минут, второй кран опорожнит полную ванну за 9 минут.   

 
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра