Втреугольнике abc медианы пересекаются в точке o. докажите что площади треугольников aob и cоа равны.

AndreyMiix AndreyMiix    1   09.03.2019 10:20    1

Ответы
чинка2 чинка2  24.05.2020 10:23

Доказательство:  Рассмотрим треуг.ABC. Проведем медианы из всех вершин, которые пересекаются в точке O. Получим треугольники треуг.AOB, треуг.BOC, треуг.AOC. Пусть их площади равны соответственно  S1,  S2,  S3. А площадь  треуг.ABC равна  S. Рассмотрим треуг.ABK и  треуг.CBK, они равной площади, т.к.  BK медиана. В треугольнике треуг.AOC  OK - медиана, значит площади треугольников AOK и COK  равны. Отсюда следует, что S1 = S2. Аналогично можно доказать, что

S2 = S3 и S3 = S1 .

смотри файл вложен правда медианы не ровные



Втреугольнике abc медианы пересекаются в точке o. докажите что площади треугольников aob и cоа равны
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра