Точку пересечения биссектрисы с АD обозначим Н. Рассмотрим ᐃ АВD В нем биссектриса ВН является высотой, поэтому ᐃАВD - равнобедренный. АН=НD=84. А так как ВD=DС, то АВ=ВD=DС, и ВС=2АВ. Биссектриса треугольника делит противоположную сторону в отношении длин прилежащих сторон. В ᐃАВС биссектриса делит АС в отношении АВ:ВС=1:2 и АС=3АE Из В проведем параллельно АС прямую до пересечения с продолжением медианы АD. Точку пересечения обозначим P. ᐃ ВDЕ =ᐃ АDС т.к. ВD=DС, углы при D равны как вертикальные, ∠СВP=∠ВСА, ⇒ ВС=АС=3 АE Треугольники АНE и BНP прямоугольные и подобны ( ∠ ВPА=∠PАСкак углы при параллельных АС и ВP и секущей ВС). АE:ВP=НE:ВН=1:3 ВН=3НE ВЕ=4НЕ НE=ВE:4=42 ВН=3*42=126 Из тр-ка АНE АE=(АН²+НE²) АE=√(84²+42²) Возвести большое число в квадрат и извлечь корень из него можно разложением числа на множители. АE=√(6²14²+3²*14²)=√14²(6²+3²)=14*3√5=42√5 АС=3*42√5=126√5 Из тр-ка АВН АВ=√(ВН²+АН²) АВ=√(9²*14²+6²*14²)=√14²(9²+6²)=14*√(9*13)=42√13 ВС=2АВ=84√13 Найдены все три стороны.
Рассмотрим ᐃ АВD
В нем биссектриса ВН является высотой, поэтому ᐃАВD - равнобедренный. АН=НD=84.
А так как ВD=DС, то АВ=ВD=DС, и ВС=2АВ.
Биссектриса треугольника делит противоположную сторону в отношении
длин прилежащих сторон.
В ᐃАВС биссектриса делит АС в отношении АВ:ВС=1:2 и АС=3АE
Из В проведем параллельно АС прямую до пересечения с продолжением медианы АD. Точку пересечения обозначим P.
ᐃ ВDЕ =ᐃ АDС т.к. ВD=DС, углы при D равны как вертикальные, ∠СВP=∠ВСА, ⇒ ВС=АС=3 АE
Треугольники АНE и BНP прямоугольные и подобны ( ∠ ВPА=∠PАСкак углы при параллельных АС и ВP и секущей ВС).
АE:ВP=НE:ВН=1:3
ВН=3НE
ВЕ=4НЕ
НE=ВE:4=42
ВН=3*42=126
Из тр-ка АНE
АE=(АН²+НE²)
АE=√(84²+42²)
Возвести большое число в квадрат и извлечь корень из него можно разложением числа на множители.
АE=√(6²14²+3²*14²)=√14²(6²+3²)=14*3√5=42√5
АС=3*42√5=126√5
Из тр-ка АВН
АВ=√(ВН²+АН²)
АВ=√(9²*14²+6²*14²)=√14²(9²+6²)=14*√(9*13)=42√13
ВС=2АВ=84√13
Найдены все три стороны.