Рассмотрим 3 случая: с отрицательной, нулевой и положительной правой частью.
1. Если , то есть .
Тогда предполагается, что модуль должен принимать значения, не большие некоторого отрицательного, то есть тоже отрицательные. Но модуль не может принимать отрицательных значений. Значит, в этом случае неравенство решений не имеет.
2. Если , то есть .
Получаем неравенство:
Поскольку модуль не принимает отрицательных значений, достаточно решить уравнение:
3. Если , то есть , то получаем неравенство с положительной правой частью:
Рассмотрим 3 случая: с отрицательной, нулевой и положительной правой частью.
1. Если
, то есть
.
Тогда предполагается, что модуль должен принимать значения, не большие некоторого отрицательного, то есть тоже отрицательные. Но модуль не может принимать отрицательных значений. Значит, в этом случае неравенство решений не имеет.
2. Если
, то есть
.
Получаем неравенство:
Поскольку модуль не принимает отрицательных значений, достаточно решить уравнение:
3. Если
, то есть
, то получаем неравенство с положительной правой частью:
Заменим его следующим двойным неравенством:
Таким образом получаем ответ:
при
: решений нет
при
: 
при
: ![x\in[-2a;\ 2a-2]](/tpl/images/2004/6663/9d563.png)