Внесите множитель под знак корня (a - b) \sqrt{m}
если а<b,


a \sqrt{b}
b \sqrt{a}

iro4ka0505 iro4ka0505    3   10.01.2022 04:06    2

Ответы
lenokm050406 lenokm050406  16.02.2022 19:21

1.

(a-b)\sqrt{m}

Если a, то a-b. Но внести под знак корня мы можем только неотрицательный множитель. Тогда, преобразуем следующим образом:

(a-b)\sqrt{m}=-(b-a)\sqrt{m}=-\sqrt{m(b-a)^2}=-\sqrt{m(a-b)^2}

2.

a\sqrt{b}

Аналогично, необходимо рассмотреть два случая:

a\sqrt{b}=\sqrt{a^2b},\ a\geqslant 0

a\sqrt{b}=-(-a)\sqrt{b}=-\sqrt{(-a)^2b}=-\sqrt{a^2b},\ a

3.

b\sqrt{a}

b\sqrt{a}=\sqrt{ab^2},\ b\geqslant 0

b\sqrt{a}=-(-b)\sqrt{a}=-\sqrt{a(-b)^2}=-\sqrt{ab^2},\ b

Уточнение. Если условие a относится и к двум последним примерам тоже, то для второго примера оно не никак. А для третьего примера на основе него можно сделать вывод, что множитель перед корнем больше числа, стоящего под знаком корня. Но поскольку под корнем стоит заведомо неотрицательное число, то и множитель перед корнем также неотрицателен. Тогда однозначно b\sqrt{a}=\sqrt{ab^2}.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра