Верно ли утверждение: а)если число делится на 3 и 8,то оно делится на 24 б)если число делится на 4 и 9,то оно делится на 36 в)если число делится на 4 и 6,то оно делится на 24 г)если число делится на 15 и 8,то оно делится на 120?

vikulya30 vikulya30    2   09.08.2019 10:00    1

Ответы
arinka3859 arinka3859  04.10.2020 07:03
А)
Числа которые делятся на 3 имеют вид:
3n
Числа которые делятся на 8 имеют вид:
8n

Так как 3 и 8 взаимно простые, то числа которые одновременно делится и на 3 и на 8, имеют вид:
3\cdot 8 \cdot n=24n

Следовательно утверждение верно.

б)
Числа которые делятся на 4 имеют вид:
4n
Числа которые делятся на 9 имеют вид:
9n

Так как 4 и 9 взаимно простые, то числа которые делятся и на 4 и на 9 одновременно, имеют вид:
4\cdot 9 \cdot n=36n

Следовательно, утверждение верно.

в)
Числа которые делятся на 4 имеют вид:
4n
Числа которые делятся на 6 имеют вид:
6n

Числа 4 и 6 не взаимно простые, т.к. НОД(4,6)=2. 

Теперь, найдем НОК этих чисел:
6=2\cdot 3\\4=2\cdot 2

[4,6]=2\cdot 2\cdot 3=12

Следовательно, числа которые делятся и на 4 и на 6, имеют вид:
12n

Следовательно, утверждение не верно

г)
Числа которые делятся на 15 имеют вид:
15n
Числа которые делятся на 8 имеют вид:
8n

15 и 8 взаимно простые, следовательно числа которые делятся и на 15 и на 8 одновременно, имеют вид:
15\cdot 8\cdot n=120n

Следовательно, утверждение верно.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра