В выражении 8⋅12+18:3−2 расставь скобки так, чтобы его значение было наименьшим.

Qwerfcsfvfw Qwerfcsfvfw    2   08.04.2020 17:12    38

Ответы
aziret31101 aziret31101  07.08.2020 17:50
(8*12+18):3-2=36
1)8*12=96
2)96+18=114
3)114:3=38
4)38-2=36
ПОКАЗАТЬ ОТВЕТЫ
вованн2 вованн2  27.01.2024 13:02
Чтобы найти наименьшее значение данного выражения, мы должны правильно расставить скобки. Давайте разберемся, как это сделать.

Выражение, которое мы должны решить: 8⋅12+18:3−2

Шаг 1: Рассмотрим умножение
Мы видим, что в выражении есть умножение 8⋅12. Для начала, мы должны выполнить это умножение.

8⋅12 = 96

Теперь выражение принимает вид: 96+18:3−2

Шаг 2: Рассмотрим деление
Теперь давайте рассмотрим операцию деления 18:3.

18:3 = 6

Выражение теперь принимает следующий вид: 96+6−2

Шаг 3: Рассмотрим сложение и вычитание
Теперь, когда у нас осталось только сложение и вычитание, давайте выполним эти операции по порядку.

96+6 = 102

102−2 = 100

Итак, мы получили значение 100.

Теперь, чтобы найти наименьшее значение, нам нужно расставить скобки таким образом, чтобы минимизировать итоговое значение.

Один из способов расставить скобки:

(8⋅(12+18):3)−2

Давайте вычислим это выражение:

12+18 = 30
8⋅30 = 240
240:3 = 80
80−2 = 78

Таким образом, когда мы расставили скобки в данном порядке, мы получили значение 78, которое является наименьшим.

Таким образом, чтобы значение данного выражения было наименьшим, мы должны расставить скобки в следующем порядке: (8⋅(12+18):3)−2, и итоговое значение будет равно 78.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра