В викторине участвуют 6 команд. Все команды разной силы, и в каждой встрече выигрывает та команда, которая сильнее. В первом раунде встречаются две случайно выбранные команды. Ничья невозможна. Проигравшая команда выбывает из викторины, а победившая команда играет со следующим случайно выбранным соперником. Известно, что в первых трёх играх победила команда А. Какова вероятность того, что эта команда выиграет четвёртый раунд?

vakhtinanelli vakhtinanelli    2   29.07.2021 14:15    448

Ответы
Osminozhka09 Osminozhka09  28.08.2021 16:24

Пусть в викторине участвовали команды А, В, С, D, E, F, причем команды В, С, D проиграли в первых трех раундах команде А.

Тогда, к четвертому раунду в игре остались три команды: А, E, F.

Рассмотрим как они могут располагаться друг относительно друга в зависимости от своей силы (на первом месте запишем сильнейшую команду, на втором - среднюю по силе, на третьем - слабейшую). Это ситуации: AEF, AFE, EAF, EFA, FAE, FEA.

С вероятностью \dfrac{1}{2} соперником команды А в четвертом раунде будет команда Е. Тогда, 3 из 6 перечисленных ситуаций окажутся благоприятными. Это ситуации: AEF, AFE, FAE - в них команда А сильнее команды Е.

Значит, вероятность того, что команда А в четвертом раунде будет играть с командой Е и выиграет у нее равна:

P(E)=\dfrac{1}{2} \cdot\dfrac{3}{6}=\dfrac{1}{2} \cdot\dfrac{1}{2}=\dfrac{1}{4}

Аналогично, с вероятностью \dfrac{1}{2} соперником команды А в четвертом раунде будет команда F. Также, 3 из 6 ситуаций окажутся благоприятными: AEF, AFE, EAF - в них команда А сильнее команды F.

Значит, вероятность того, что команда А в четвертом раунде будет играть с командой F и выиграет у нее равна:

P(F)=\dfrac{1}{2} \cdot\dfrac{3}{6}=\dfrac{1}{2} \cdot\dfrac{1}{2}=\dfrac{1}{4}

Тогда, вероятность того, что команда А выиграет в четвертом раунде равна:

p=P(E)+P(F)=\dfrac{1}{4} +\dfrac{1}{4} =\dfrac{1}{2}

ответ: 1/2

ПОКАЗАТЬ ОТВЕТЫ
serofimtimoxa serofimtimoxa  14.01.2024 15:45
Чтобы ответить на данный вопрос, нужно вначале определить вероятности победы команды А в каждом из первых трех раундов.

В первом раунде команда А играет со случайно выбранной командой. Поскольку все команды разной силы и побеждает сильнейшая, вероятность победы команды А в первом раунде составляет 1/5 (5 команд - это 4 возможных соперника для команды А, так как одна команда уже выбыла). Аналогично, в каждой из следующих двух игр вероятность победы команды А также будет 1/5.

Теперь можно рассмотреть вероятности победы команды А в каждом из трёх раундов подряд. Поскольку события независимы, вероятность победы команды А в первых трёх раундах будет равна произведению вероятностей победы в каждом раунде:

P(победа в первых трех раундах) = (1/5) * (1/5) * (1/5) = 1/125

Таким образом, вероятность того, что команда А выиграет четвёртый раунд, при условии, что она уже победила в первых трёх раундах, равна 1/5.

Обоснование: Наш ответ основан на предположении, что вероятность победы команды А не зависит от результатов предыдущих игр. Это предположение справедливо, поскольку в условии задачи не указано, что команда А стала сильнее или слабее после каждой победы. Если бы у нас было больше информации о сильных и слабых командах, мы могли бы изменить нашу оценку вероятности.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра