2√3 ед. 4√3 ед.
Объяснение:
∠В=90-60=30°; по свойству катета, лежащего против угла 30°, АС=1/2 АВ.
Пусть АС=х, АВ=2х.
По теореме Пифагора
ВС²=АВ²-АС²; 36=(2х)²-х²; 36=4х²-х²; 3х²=36; х²=12; х=√12=2√3 ед.
АС=2√3 ед, АВ=2√3*2=4√3 ед.
ответ 2√3 ; 4√3
∠В=90-60=30°; АВ=СВ/cos∠В=6/cos30°=6*2/√3=12√3/3=4√3
АВ*sin30°=АС=4√3*0.5=2√3
2√3 ед. 4√3 ед.
Объяснение:
∠В=90-60=30°; по свойству катета, лежащего против угла 30°, АС=1/2 АВ.
Пусть АС=х, АВ=2х.
По теореме Пифагора
ВС²=АВ²-АС²; 36=(2х)²-х²; 36=4х²-х²; 3х²=36; х²=12; х=√12=2√3 ед.
АС=2√3 ед, АВ=2√3*2=4√3 ед.
ответ 2√3 ; 4√3
Объяснение:
∠В=90-60=30°; АВ=СВ/cos∠В=6/cos30°=6*2/√3=12√3/3=4√3
АВ*sin30°=АС=4√3*0.5=2√3