В парке при музее решили разбить клумбу в форме четырёхугольника. Две стороны этой клумбы (AD и BC), если бы можно было продлить их на бесконечную длину, никогда б не пересеклись. Другие две (AB и CD), если бы можно было продлить их на бесконечную длину, сошлись бы когда-нибудь одной точке. Оказалось, что вокруг этой клумбы можно сделать дорожку, имеющую форму абсолютно правильной окружности, причём все четыре вершины клумбы будут лежать на этой дорожке. Найди AB, если известно, что клумба занимает площадь 1530 кв. м, а две её стороны имеют размеры AD=58 м и BC=10 м.