ответ и Объяснение:
Нужно знать формулы сокращённого умножения:
a) a²-b² = (a-b)·(a+b);
b) (a-b)² = a²-2·a·b+b²;
c) a³+b³ = (a+b)·(a²-a·b+b²);
d) a³-b³ = (a-b)·(a²+a·b+b²);
e) (a-b)³ = a³-3·a²·b+3·a·b²-b³.
1) (a²-3)³-(a-2)·(a²+4)·(a+2) = [e)] = a⁶-3·a⁴·3+3·a²·3²-3³-(a-2)·(a+2)·(a²+4) = [a)] =
= a⁶-9·a⁴+27·a²-27-(a²-4)·(a²+4) = [a)] = a⁶-9·a⁴+27·a²-27-(a⁴-16) =
= a⁶-9·a⁴+27·a²-27-a⁴+16 = a⁶-10·a⁴+27·a²-11;
2) (b²-3)³-(b²+3)(b⁴-3·b²+9) = [e), c)] = b⁶-3·b⁴·3+3·b²·3²-3³-(b⁶+27) =
= b⁶-9·b⁴+27·b²-27-b⁶-27 = -9·b⁴+27·b²-54;
3) (m²-1)(m⁴+m²+1)-(m²-1)³ = [d), e)] = m⁶-1-(m⁶-3·m⁴·1+3·m²·1²-1³) =
= m⁶-1-(m⁶-3·m⁴+3·m²-1) = m⁶-1-m⁶+3·m⁴-3·m²+1 = 3·m⁴-3·m²;
4) (x²-2)·(x⁴+2·x²+4)-(x³-1)² = [d), b)] = x⁶-8-(x⁶-2·x³+1) =
= x⁶-8-x⁶+2·x³-1 = 2·x³-9.
ответ и Объяснение:
Нужно знать формулы сокращённого умножения:
a) a²-b² = (a-b)·(a+b);
b) (a-b)² = a²-2·a·b+b²;
c) a³+b³ = (a+b)·(a²-a·b+b²);
d) a³-b³ = (a-b)·(a²+a·b+b²);
e) (a-b)³ = a³-3·a²·b+3·a·b²-b³.
1) (a²-3)³-(a-2)·(a²+4)·(a+2) = [e)] = a⁶-3·a⁴·3+3·a²·3²-3³-(a-2)·(a+2)·(a²+4) = [a)] =
= a⁶-9·a⁴+27·a²-27-(a²-4)·(a²+4) = [a)] = a⁶-9·a⁴+27·a²-27-(a⁴-16) =
= a⁶-9·a⁴+27·a²-27-a⁴+16 = a⁶-10·a⁴+27·a²-11;
2) (b²-3)³-(b²+3)(b⁴-3·b²+9) = [e), c)] = b⁶-3·b⁴·3+3·b²·3²-3³-(b⁶+27) =
= b⁶-9·b⁴+27·b²-27-b⁶-27 = -9·b⁴+27·b²-54;
3) (m²-1)(m⁴+m²+1)-(m²-1)³ = [d), e)] = m⁶-1-(m⁶-3·m⁴·1+3·m²·1²-1³) =
= m⁶-1-(m⁶-3·m⁴+3·m²-1) = m⁶-1-m⁶+3·m⁴-3·m²+1 = 3·m⁴-3·m²;
4) (x²-2)·(x⁴+2·x²+4)-(x³-1)² = [d), b)] = x⁶-8-(x⁶-2·x³+1) =
= x⁶-8-x⁶+2·x³-1 = 2·x³-9.