Укажите квадратное уравнение , корни которого являются обратными корням уравнения х² +8х +15 =0

Bro456804 Bro456804    2   27.09.2019 07:40    0

Ответы
svetsok2006 svetsok2006  04.08.2020 17:28
{x}^{2} + 8x + 15 = 0 \\ d = {b}^{2} - 4ac = 64 - 4 \times 15 = 4 \\ x1 = \frac{ - 8 + 2}{2} = \frac{ - 6}{2} = - 3 \\ x2 = \frac{ - 8 - 2}{2} = \frac{ - 10}{2} = - 5
Обратные корни:
х1 = -1/3
х2 = -1/5

По теореме Виета:
x1 + x2 = -b
x1*x2 = c

x1 + x2 = -1/3 - 1/5 = -5/15 - 3/15 = -8/15
b = 8/15
x1*x2 = -1/3 * (-1/5) = 1/15

{x}^{2} + \frac{8}{15} x + \frac{1}{15} = 0 \\ 15 {x}^{2} + 8x + 1 = 0
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра