Три числа в сумме 18 и образуют арифметическую прогрессию. если у ним прибавить соответственно 1,3 и 17, то они составляют возрастающую . прогрессию. найти эти три числа

katya1172 katya1172    3   31.07.2019 13:40    2

Ответы
SofiLand854 SofiLand854  28.09.2020 17:00
Арифметическая прогрессия ,значит, каждый следующий член больше предыдущего на определенное число.
а2=а1+d
a3=а1+d+d

a1+а1+d+а1+d+d=18
3a1+3d=18
3*(a1+d)=18
a1+d=18/3
а1+d=6 - второй член арифм. прогрессии 
также арифм. прогрессию можно записать как:
а1+а2+а3=18
а1+а3+6=18
а1+а3=12
а1=12-а3(это наша будущая подстановка)
b2=6+3 
b2=9 - второй член геометр. прогрессии
теперь воспользуемся свойством геометр. прогрессии 
(bn)^2=b(n-1)*b(n+1) 
n-1 и n+1 номер члена прогрессии
(b2)^2=(a1+1)*(a3+17)
9^2=(a1+1)*(a3+17)
81=(a1+1)*(a3+17) 
теперь вводим систему:
81=(a1+1)*(a3+17) 
а1=12-а3
в 1 уравнение подставим второе
81=(12-а3+1)*(a3+17) 
81=(13-а3)*(a3+17) 
пусть а3=х
81=(13-х)*(х+17)
81=13х +221-х^2-17x
81=-x^2-4x+221
x^2+4x-221+81=0
x^2+4x-140=0
по т. виета
х1+х2=-4
х1*х2=-140
х1=10
х2=-14 (не подходит, -14<6,а3<а2, у насвозрастающая)
10=а3
18=10+6+а1
а1=2 
ответ: 2,6,10
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра