Фигура ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. АВ параллельна CD. Тогда треугольникм АКВ и DKC подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
Фигура ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. АВ параллельна CD. Тогда треугольникм АКВ и DKC подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
ответ: KD=10см.