x = π + 2πk (k ∈Z)
x = ±4π/3 + 4πn (n∈Z)
Объяснение:
1 + cos 0.5x + cos x = 0
sin² 0.5x + cos² 0.5x + cos 0.5x + cos² 0.5x - sin² 0.5x = 0
2cos² 0.5x + cos 0.5x = 0
cos 0.5x · (2cos 0.5x + 1) = 0
1) cos 0.5x = 0 ⇒ 0.5x = π/2 + πk ⇒ x = π + 2πk (k ∈Z)
2) 2cos 0.5x + 1 = 0 ⇒ cos 0.5x = -1/2 ⇒ 0.5x = ±2π/3 + 2πn ⇒
⇒ x = ±4π/3 + 4πn (n∈Z)
x = π + 2πk (k ∈Z)
x = ±4π/3 + 4πn (n∈Z)
Объяснение:
1 + cos 0.5x + cos x = 0
sin² 0.5x + cos² 0.5x + cos 0.5x + cos² 0.5x - sin² 0.5x = 0
2cos² 0.5x + cos 0.5x = 0
cos 0.5x · (2cos 0.5x + 1) = 0
1) cos 0.5x = 0 ⇒ 0.5x = π/2 + πk ⇒ x = π + 2πk (k ∈Z)
2) 2cos 0.5x + 1 = 0 ⇒ cos 0.5x = -1/2 ⇒ 0.5x = ±2π/3 + 2πn ⇒
⇒ x = ±4π/3 + 4πn (n∈Z)