Т.т при каких значениях α множеством решений неравенства 3х-7< \frac{ \alpha }{3} является числовой промежуток (-∞; 4) ?

asdf43 asdf43    2   27.06.2019 02:10    1

Ответы
lubenkovalilia2 lubenkovalilia2  21.07.2020 17:42
Для начала решим неравенство(оно, кстати, является линейным) как мы всегда это делали.

9x - 21 < a
9x < a + 21
x < (a+21)/9
Что мы здесь сделали? Мы просто решили линейное неравенство относительно x, а альфа - это параметр - неизвестное число.
теперь совсем просто ответить на вопрос задачи.
Решением нашего неравенства должно быть x < 4. Если мы немного всмотримся в решённое неравенство и в этот интервал, то мы заметим, что условие выполняется тогда, когда (a+21)/9 = 4
Действительно, если (a+21)/9 > 4, то решением исходного неравенства, очевидно, будет не только x < 4.
Если же ,наоборот, меньше, то не весь интервал x < 4 будет решением неравенства. Поэтому, возможно только равенство, решаем полученное уравнение и находим альфа:

a + 21 = 36
a = 36 - 21 = 15 - это и есть ответ
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра