Стригонометрией! нужно! найдите наибольшее значение функции y=2sinx+24x/pi+6 на отрезке [-5pi/6; 0] когда вместо х подставляю -5pi/6, получается, что нужно решать по формуле sin(-5pi/6)=sin(pi/6-pi). чему будет равно sin(pi/6-pi) ?
Это задача на наибольшее(наименьшее) значение функции. План наших действий: 1) ищем производную 2) приравниваем её к нулю, решаем получившееся уравнение 3) смотрим: какие корни попали в указанный промежуток 4) вычисляем значения данной функции в этих корнях и на концах промежутка. 5) пишем ответ начали? 1) y' = 2Сosx + 24/π 2) 2Сosx + 24/π = 0 2Сosx -= - 24/π Сosx = - 12/π нет решений 3) решений нет, значит, в функцию подставим концы промежутка и найдём из ответов наибольшее значение. 4) а) х = -5π/6 у = 2Sin(-5π/6) +24*(-5π/6)/π + 6 = -2*1/2 - 20 +6 = -1 -20 +6 = -13 б) х = 0 у = 0+0 +6 = 6 ответ: max y = 0
1) ищем производную
2) приравниваем её к нулю, решаем получившееся уравнение
3) смотрим: какие корни попали в указанный промежуток
4) вычисляем значения данной функции в этих корнях и на концах промежутка.
5) пишем ответ
начали?
1) y' = 2Сosx + 24/π
2) 2Сosx + 24/π = 0
2Сosx -= - 24/π
Сosx = - 12/π
нет решений
3) решений нет, значит, в функцию подставим концы промежутка и найдём из ответов наибольшее значение.
4) а) х = -5π/6
у = 2Sin(-5π/6) +24*(-5π/6)/π + 6 = -2*1/2 - 20 +6 = -1 -20 +6 = -13
б) х = 0
у = 0+0 +6 = 6
ответ: max y = 0