Проведем радиусы окружности к точкам касания со сторонами квадрата, как показано на рисунке. Обозначим ключевые точки A, B, C и D. ABCD образует четырехугольник. В этом четырехугольнике: ∠A=90° (по определению квадрата). ∠B=∠D=90° (по свойству касательной). Тогда и ∠С=90° (так как сумма углов четырехугольника равна 360°). Т.е. ABCD - прямоугольник (по определению). По свойству прямоугольника: AB=CD=R AD=BD=R Т.е. ABCD - квадрат. Из рисунка очевидно, что радиус равен половине стороны квадрата: R=56/2=28
ответ: радиус равен 28
Объяснение:
Проведем радиусы окружности к точкам касания со сторонами квадрата, как показано на рисунке. Обозначим ключевые точки A, B, C и D. ABCD образует четырехугольник. В этом четырехугольнике: ∠A=90° (по определению квадрата). ∠B=∠D=90° (по свойству касательной). Тогда и ∠С=90° (так как сумма углов четырехугольника равна 360°). Т.е. ABCD - прямоугольник (по определению). По свойству прямоугольника: AB=CD=R AD=BD=R Т.е. ABCD - квадрат. Из рисунка очевидно, что радиус равен половине стороны квадрата: R=56/2=28