Составьте уравнение касательной к графику функции f(x)=x^2-3x+2 в точке с абсциссой x=1

Дончара Дончара    2   26.09.2019 23:30    8

Ответы
JulianaBrolol JulianaBrolol  08.10.2020 21:22

Общий вид уравнения касательной имеет вид: f(x)=y'(x_0)(x-x_0)+y(x_0).


Производная функции: y'=(x^2-3x+2)'=(x^2)'-(3x)'+(2)'=2x-3

Производная функции в точке x_0=1:~~y'(1)=2\cdot 1-3=-1


Найдем теперь значение функции в точке x_0=1:~ y(1)=1^2-3\cdot 1+2=0



ИСКОМОЕ УРАВНЕНИЕ КАСАТЕЛЬНОЙ: y=-1\cdot(x-1)+0=1-x

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра