Составьте квадратное уравнение, корни которого в 2 раза меньше соответствующих корней уравнения 4х-12х+3=0

kristinakotkotk kristinakotkotk    2   27.09.2019 02:10    0

Ответы
SpaniGar SpaniGar  27.08.2020 07:59

Пусть x1 x2 - корни данного уравнения. Тогда(x1+x2) = 12/4 и x1*x2 = 3/4(По теореме Виета). Пусть y1 y2 - корни искомого уравнения. Тогда y1 = x1/2 и y2=x2/2. Пусть искомое уравнение будет вида x^2+px+q = 0. Тогда -p= x1+x2/2. q = x1*x2/4. Т.е. p = -3/2. q= 3/16. Тогда искомое уравнение x^2--3/2x+3/16 или же 16x^2-24x+3=0.

ПОКАЗАТЬ ОТВЕТЫ
Dan1L1an Dan1L1an  27.08.2020 07:59

4x²-12x+3=0

D=144 - 4*4*3=144 - 48= 96= 4*4*6

x1,2= 3/2 +- √6 /2

корни в два раза меньше: 3/4 +- √6 /4.

(х - 3/4 - √6 /4) (х - 3/4 + √6 /4)= х² - 6/4 х + 3/16

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра