Составить уравнение кривой, проходящей через точку (3; 4), если угловой коэффициент касательной к этой кривой в любой её точке равен -2x нужно подробное решение

RomochkaRomashka RomochkaRomashka    3   09.06.2019 06:10    2

Ответы
katelove8 katelove8  08.07.2020 06:17
Угловой коэффициент касательной равен производной функции в точке касания, зачит  y'=x^2-2x.

Чтобы найти саму функцию, то есть первообразную, надо проинтегрировать производную.

y(x)=\int (x^2-2x)dx=\frac{x^3}{3}-2\frac{x^2}{2}+C=\frac{x^3}{3}-x^2+C

Найдём С. Подставим координаты точки в первообразную.

A(3,4),\; \; 4=\frac{3^3}{3}-3^2+C\\\\4=9-9+C,\; C=4\\\\y(x)=\frac{x^3}{3}-x^2+4
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра