Составить три задачи по теории вероятности по профессии машиниста и решить их. Решение скинуть и саму задачу

miloserdova2404 miloserdova2404    2   16.01.2021 00:59    12

Ответы
Tenur Tenur  15.02.2021 00:59

Задача 1.

В группе 30 студентов. Необходимо выбрать старосту, заместителя старосты и профорга. Сколько существует это сделать?

Решение. Старостой может быть выбран любой из 30 студентов, заместителем - любой из оставшихся 29, а профоргом – любой из оставшихся 28 студентов, т.е. n1=30, n2=29, n3=28. По правилу умножения общее число выбора старосты, его заместителя и профорга равно     N=n1n2n3=302928=24360.

Задача 2.

Два почтальона должны разнести 10 писем по 10 адресам. Сколькими они могут распределить работу?

Решение. Первое письмо имеет n1=2 альтернативы – либо его относит к адресату первый почтальон, либо второй. Для второго письма также есть n2=2 альтернативы и т.д., т.е. n1=n2=…=n10=2. Следовательно, в силу правила умножения общее число распределений писем между двумя почтальонами равно .

Задача  3.

В ящике 100 деталей, из них 30 – деталей 1-го сорта, 50 – 2-го, остальные – 3-го. Сколько существует извлечения из ящика одной детали 1-го или 2-го сорта?

Решение. Деталь 1-го сорта может быть извлечена го сорта По правилу суммы существует извлечения одной детали 1-го или 2-го сорта.  

Задача 4.  

Порядок выступления 7 участников конкурса определяется жребием. Сколько различных вариантов жеребьевки при этом возможно?

Решение. Каждый вариант жеребьевки отличается только порядком участников конкурса, т.е. является перестановкой из 7 элементов. Их число равно

Задача 5.

В конкурсе по 5 номинациям участвуют 10 кинофильмов. Сколько существует вариантов распределения призов, если по всем номинациям установлены различные премии?

Решение. Каждый из вариантов распределения призов представляет собой комбинацию 5 фильмов из 10, отличающуюся от других комбинаций, как составом, так и их порядком. Так как каждый фильм может получить призы как по одной, так и по нескольким номинациям, то одни и те же фильмы могут повторяться. Поэтому число таких комбинаций равно числу размещений с повторениями из 10 элементов по 5:  

Задача  6.  

В шахматном турнире  участвуют 16 человек. Сколько партий должно быть сыграно в турнире, если между любыми двумя участниками должна быть сыграна одна партия?

Решение. Каждая партия играется двумя участниками из 16 и отличается от других только составом пар участников, т.е. представляет собой сочетания из 16 элементов по 2. Их число равно  

Вот надеюсь если не правильно напиши в комментариях (толь нужно будет написать где неправильно и почему)

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра