Случайная величина х имеет равномерное распределение вероятностей. найдите плотность вероятности, если ожидание случайной величины х равно 8, а дисперсия равна — з

Myziki Myziki    2   13.09.2019 04:10    2

Ответы
КаролинаКим КаролинаКим  07.10.2020 11:05
Распределение вероятностей случайной величины X называется равномерным на отрезке [a;b], если плотность вероятностей этой величины постоянна на данном отрезке и равна
                               \displaystyle p(x)= \left \{ {{ \dfrac{1}{b-a},~~~ x\in [a;b] } \atop {0~~~ ~~~,~~x\notin [a;b]}} \right.
Математическое  ожидание  случайной  величины,  равномерно распределенной  на  отрезке,  есть  середина  отрезка  и  рассчитывается по  формуле:
                                          M(X)= \dfrac{b+a}{2}
а  дисперсия:
                                          D(X)= \dfrac{(b-a)^2}{12}

Решив  систему  уравнений  \displaystyle \left \{ {{ \dfrac{b+a}{2}=8 } \atop { \dfrac{(b-a)^2}{12}=3 }} \right.  получим: \displaystyle \left \{ {{a=5~~} \atop {b=11}} \right.

Подставим в плотность вероятности, получим окончательный ответ
  p(x)=\displaystyle \left \{ {{ \frac{1}{6},~~~ x\in[5;11] } \atop {0,~~~ x\notin[5;11]}} \right.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра