Сколько существует трехзначных натуральных чисел, у которых сум ма цифр суммы цифр принимает наибольшее возможное значение?
(А) 1 (Б) 9 (В) 36 (Г) 45
(Д) 55​

пупсень6 пупсень6    2   24.01.2021 17:06    1

Ответы
arisazenina783 arisazenina783  23.02.2021 17:07

Найдем, в каких пределах может изменяться сума цифр трехзначного числа:

- минимальная сумма цифр равна 1 (у числа 100)

- максимальная сумма цифр равна 27 (у числа 999)

Найдем наибольшую сумму цифр среди чисел от 1 до 27. Очевидно, что нужно по возможности максимально увеличить разряд единиц и разряд десятков. Таким образом, образуется два кандидата: числа 19 и 27.

- сумма цифр числа 19 равна 1+9=10

- сумма цифр числа 27 равна 2+7=9

Итак, наибольшая сумма цифр суммы цифр равна 10. Значит, искомая сумма цифр равна 19.

Трехзначные числа с суммой цифр 19 можно разделить на две группы: содержащие одинаковые цифры и не содержащие одинаковые цифры.

Рассмотрим случай, когда в записи числа используются одинаковые цифры:

9-9-1, 9-5-5, 8-8-3, 7-7-5, 7-6-6 - итого 5 случаев, для каждого из которых существует перестановок цифр указать место для уникальной цифры). Всего для этих вариантов имеем 5·3=15 чисел

Рассмотрим случай, когда в записи числа не используются одинаковые цифры:

9-8-2, 9-7-3, 9-6-4, 8-7-4, 8-6-5 - итого, 5 случаев, для каждого из которых существует перестановок цифр. Всего для этих вариантов имеем 5·6=30 чисел

Таким образом, всего есть 15+30=45 чисел, удовлетворяющих поставленному условию.

ответ: 45

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра