Сколько корней имеет уравнение: |x+2+|-x-4||-8=x

хочусдохнуть хочусдохнуть    3   16.09.2019 09:00    0

Ответы
zarinkakoshzhan zarinkakoshzhan  01.09.2020 16:02

7/Задание № 3:

Сколько корней имеет уравнение: |x+2+|−x−4||−8=x?

|x+2+|−x−4||−8=x

|x+2+|x+4||−8=x

\left \{ {{|x+2+x+4|-8=x,x
\geq -4} \atop {|x+2-x-4|-8=x,x\ \textless \ -4}} \right. \\ \left \{
{{|2x+6|-8=x,x \geq -4} \atop {|-2|-8=x,x\ \textless \ -4}} \right. \\ \left \{
{{ \left \{ {{2x+6-8=x,x \geq -3} \atop {-2x-6-8=x,-4 \leq x \ \textless \ -3}}
\right. } \atop {2-8=x,x\ \textless \ -4}} \right.

\left \{ {{ \left \{
{{2x-2=x,x \geq -3} \atop {-2x-14=x,-4 \leq x \ \textless \ -3}} \right. }
\atop {2-8=x,x\ \textless \ -4}} \right. \\ \left \{ {{ \left \{ {{x=2,x \geq
-3} \atop {3x=-14,-4 \leq x \ \textless \ -3}} \right. } \atop {x=-6,x\
\textless \ -4}} \right.

\left \{ {{ \left \{
{{x=2,x \geq -3} \atop {x=-14/3,-4 \leq x \ \textless \ -3}} \right. } \atop
{x=-6,x\ \textless \ -4}} \right

Условию раскрытия моделей соответствуют только первый и третий корни 2 и -6.

ОТВЕТ: 2 корня

ПОКАЗАТЬ ОТВЕТЫ
Ксюша10092007 Ксюша10092007  01.09.2020 16:02
22 это было 8ообще изи
ПОКАЗАТЬ ОТВЕТЫ
Sherlok2006 Sherlok2006  29.10.2020 13:16

7/Задание № 1:

Сколько чётных двузначных чисел, которые при делении на сумму цифр числа дают неполное частное 7 и остаток 3?

РЕШЕНИЕ: Пусть это число АВ=10a+b. Тогда, 10a+b=7(a+b)+3.

10a+b=7a+7b+3

3a=6b+3

a=2b+1

2b=a-1

Учитывая, что:

- а и b цифры, то есть целые числа от 0 до 9, но а не ноль, поскольку AB двузначное число

- число AB должно быть четным, то проверять нечетные b нет смысла

- остаток должен быть меньше делителя, значит минимально возможная сумма (a+b) равна 4

b=0: a=2*0+1=1 - не может быть a+b=1<4

b=2: a=2*2+1=5, число 52

b=4: a=2*4+1=9, число 94

При b=6 и более а=2*6+1=13 и более - не соответствует цифре.

ОТВЕТ: 2 числа

 

7/Задание № 3:

Сколько корней имеет уравнение: |x+2+|−x−4||−8=x?

|x+2+|−x−4||−8=x

|x+2+|x+4||−8=x

\left \{&#10;{{|x+2+x+4|-8=x,x \geq -4} \atop {|x+2-x-4|-8=x,x\ \textless \ -4}} \right. \\&#10;\left \{ {{|2x+6|-8=x,x \geq -4} \atop {|-2|-8=x,x\ \textless \ -4}} \right. \\&#10;\left \{ {{ \left \{ {{2x+6-8=x,x \geq -3} \atop {-2x-6-8=x,-4 \leq x \&#10;\textless \ -3}} \right. } \atop {2-8=x,x\ \textless \ -4}} \right.

\left \{ {{ \left \{&#10;{{2x-2=x,x \geq -3} \atop {-2x-14=x,-4 \leq x \ \textless \ -3}} \right. }&#10;\atop {2-8=x,x\ \textless \ -4}} \right. \\ \left \{ {{ \left \{ {{x=2,x \geq&#10;-3} \atop {3x=-14,-4 \leq x \ \textless \ -3}} \right. } \atop {x=-6,x\&#10;\textless \ -4}} \right.

\left \{ {{ \left \{&#10;{{x=2,x \geq -3} \atop {x=-14/3,-4 \leq x \ \textless \ -3}} \right. } \atop&#10;{x=-6,x\ \textless \ -4}} \right

Условию раскрытия моделей соответствуют только первый и третий корни 2 и -6.

ОТВЕТ: 2 корня

ПОКАЗАТЬ ОТВЕТЫ
Yasmina55 Yasmina55  29.10.2020 13:16

7/Задание № 3:

Сколько корней имеет уравнение: |x+2+|−x−4||−8=x?

|x+2+|−x−4||−8=x

|x+2+|x+4||−8=x

\left \{ {{|x+2+x+4|-8=x,x \geq -4} \atop {|x+2-x-4|-8=x,x\ \textless \ -4}} \right. \\ \left \{ {{|2x+6|-8=x,x \geq -4} \atop {|-2|-8=x,x\ \textless \ -4}} \right. \\ \left \{ {{ \left \{ {{2x+6-8=x,x \geq -3} \atop {-2x-6-8=x,-4 \leq x \ \textless \ -3}} \right. } \atop {2-8=x,x\ \textless \ -4}} \right.

\left \{ {{ \left \{ {{2x-2=x,x \geq -3} \atop {-2x-14=x,-4 \leq x \ \textless \ -3}} \right. } \atop {2-8=x,x\ \textless \ -4}} \right. \\ \left \{ {{ \left \{ {{x=2,x \geq -3} \atop {3x=-14,-4 \leq x \ \textless \ -3}} \right. } \atop {x=-6,x\ \textless \ -4}} \right.

\left \{ {{ \left \{ {{x=2,x \geq -3} \atop {x=-14/3,-4 \leq x \ \textless \ -3}} \right. } \atop {x=-6,x\ \textless \ -4}} \right

Условию раскрытия моделей соответствуют только первый и третий корни 2 и -6.

ОТВЕТ: 2 корня

ПОКАЗАТЬ ОТВЕТЫ
доньак доньак  29.10.2020 13:16

7/Задание № 3:

Сколько корней имеет уравнение: |x+2+|−x−4||−8=x?

|x+2+|−x−4||−8=x

|x+2+|x+4||−8=x

\left \{&#10;{{|x+2+x+4|-8=x,x \geq -4} \atop {|x+2-x-4|-8=x,x\ \textless \ -4}} \right. \\&#10;\left \{ {{|2x+6|-8=x,x \geq -4} \atop {|-2|-8=x,x\ \textless \ -4}} \right. \\&#10;\left \{ {{ \left \{ {{2x+6-8=x,x \geq -3} \atop {-2x-6-8=x,-4 \leq x \&#10;\textless \ -3}} \right. } \atop {2-8=x,x\ \textless \ -4}} \right.

\left \{ {{ \left \{&#10;{{2x-2=x,x \geq -3} \atop {-2x-14=x,-4 \leq x \ \textless \ -3}} \right. }&#10;\atop {2-8=x,x\ \textless \ -4}} \right. \\ \left \{ {{ \left \{ {{x=2,x \geq&#10;-3} \atop {3x=-14,-4 \leq x \ \textless \ -3}} \right. } \atop {x=-6,x\&#10;\textless \ -4}} \right.

\left \{ {{ \left \{&#10;{{x=2,x \geq -3} \atop {x=-14/3,-4 \leq x \ \textless \ -3}} \right. } \atop&#10;{x=-6,x\ \textless \ -4}} \right

Условию раскрытия моделей соответствуют только первый и третий корни 2 и -6.

ОТВЕТ: 2 корня

ПОКАЗАТЬ ОТВЕТЫ
plagods plagods  29.10.2020 13:16

7/Задание № 3:

Сколько корней имеет уравнение: |x+2+|−x−4||−8=x?

|x+2+|−x−4||−8=x

|x+2+|x+4||−8=x

\left \{&#10;{{|x+2+x+4|-8=x,x \geq -4} \atop {|x+2-x-4|-8=x,x\ \textless \ -4}} \right. \\&#10;\left \{ {{|2x+6|-8=x,x \geq -4} \atop {|-2|-8=x,x\ \textless \ -4}} \right. \\&#10;\left \{ {{ \left \{ {{2x+6-8=x,x \geq -3} \atop {-2x-6-8=x,-4 \leq x \&#10;\textless \ -3}} \right. } \atop {2-8=x,x\ \textless \ -4}} \right.

\left \{ {{ \left \{&#10;{{2x-2=x,x \geq -3} \atop {-2x-14=x,-4 \leq x \ \textless \ -3}} \right. }&#10;\atop {2-8=x,x\ \textless \ -4}} \right. \\ \left \{ {{ \left \{ {{x=2,x \geq&#10;-3} \atop {3x=-14,-4 \leq x \ \textless \ -3}} \right. } \atop {x=-6,x\&#10;\textless \ -4}} \right.

\left \{ {{ \left \{&#10;{{x=2,x \geq -3} \atop {x=-14/3,-4 \leq x \ \textless \ -3}} \right. } \atop&#10;{x=-6,x\ \textless \ -4}} \right

Условию раскрытия моделей соответствуют только первый и третий корни 2 и -6.

ОТВЕТ: 2 корня

ПОКАЗАТЬ ОТВЕТЫ
664565465 664565465  29.10.2020 13:16

7/Задание № 3:

Сколько корней имеет уравнение: |x+2+|−x−4||−8=x?

|x+2+|−x−4||−8=x

|x+2+|x+4||−8=x

\left \{ {{|x+2+x+4|-8=x,x&#10;\geq -4} \atop {|x+2-x-4|-8=x,x\ \textless \ -4}} \right. \\ \left \{&#10;{{|2x+6|-8=x,x \geq -4} \atop {|-2|-8=x,x\ \textless \ -4}} \right. \\ \left \{&#10;{{ \left \{ {{2x+6-8=x,x \geq -3} \atop {-2x-6-8=x,-4 \leq x \ \textless \ -3}}&#10;\right. } \atop {2-8=x,x\ \textless \ -4}} \right.

\left \{ {{ \left \{&#10;{{2x-2=x,x \geq -3} \atop {-2x-14=x,-4 \leq x \ \textless \ -3}} \right. }&#10;\atop {2-8=x,x\ \textless \ -4}} \right. \\ \left \{ {{ \left \{ {{x=2,x \geq&#10;-3} \atop {3x=-14,-4 \leq x \ \textless \ -3}} \right. } \atop {x=-6,x\&#10;\textless \ -4}} \right.

\left \{ {{ \left \{&#10;{{x=2,x \geq -3} \atop {x=-14/3,-4 \leq x \ \textless \ -3}} \right. } \atop&#10;{x=-6,x\ \textless \ -4}} \right

Условию раскрытия моделей соответствуют только первый и третий корни 2 и -6.

ОТВЕТ: 2 корня

7/Задание № 4:

Назовите такое значение параметра a, при котором неравенство ax>7x+2 не имеет решений.

ax>7x+2

ax-7x>2

(a-7)x>2

Если а=7, то неравенство 0>2 не имеет решений.

Если а>7, то решения x>2/(a-7)

Если а<7, то решения x<2/(a-7)

ОТВЕТ: 7

ПОКАЗАТЬ ОТВЕТЫ
HelenStarovir HelenStarovir  29.10.2020 13:16

7/Задание № 3:

Сколько корней имеет уравнение: |x+2+|−x−4||−8=x?

|x+2+|−x−4||−8=x

|x+2+|x+4||−8=x

\left \{ {{|x+2+x+4|-8=x,x&#10;\geq -4} \atop {|x+2-x-4|-8=x,x\ \textless \ -4}} \right. \\ \left \{&#10;{{|2x+6|-8=x,x \geq -4} \atop {|-2|-8=x,x\ \textless \ -4}} \right. \\ \left \{&#10;{{ \left \{ {{2x+6-8=x,x \geq -3} \atop {-2x-6-8=x,-4 \leq x \ \textless \ -3}}&#10;\right. } \atop {2-8=x,x\ \textless \ -4}} \right.

\left \{ {{ \left \{&#10;{{2x-2=x,x \geq -3} \atop {-2x-14=x,-4 \leq x \ \textless \ -3}} \right. }&#10;\atop {2-8=x,x\ \textless \ -4}} \right. \\ \left \{ {{ \left \{ {{x=2,x \geq&#10;-3} \atop {3x=-14,-4 \leq x \ \textless \ -3}} \right. } \atop {x=-6,x\&#10;\textless \ -4}} \right.

\left \{ {{ \left \{&#10;{{x=2,x \geq -3} \atop {x=-14/3,-4 \leq x \ \textless \ -3}} \right. } \atop&#10;{x=-6,x\ \textless \ -4}} \right

Условию раскрытия моделей соответствуют только первый и третий корни 2 и -6.

ОТВЕТ: 2 корня

ПОКАЗАТЬ ОТВЕТЫ
Настя55251 Настя55251  29.10.2020 13:16

7/Задание № 3:

Сколько корней имеет уравнение: |x+2+|−x−4||−8=x?

|x+2+|−x−4||−8=x

|x+2+|x+4||−8=x

\left \{ {{|x+2+x+4|-8=x,x&#10;\geq -4} \atop {|x+2-x-4|-8=x,x\ \textless \ -4}} \right. \\ \left \{&#10;{{|2x+6|-8=x,x \geq -4} \atop {|-2|-8=x,x\ \textless \ -4}} \right. \\ \left \{&#10;{{ \left \{ {{2x+6-8=x,x \geq -3} \atop {-2x-6-8=x,-4 \leq x \ \textless \ -3}}&#10;\right. } \atop {2-8=x,x\ \textless \ -4}} \right.

\left \{ {{ \left \{&#10;{{2x-2=x,x \geq -3} \atop {-2x-14=x,-4 \leq x \ \textless \ -3}} \right. }&#10;\atop {2-8=x,x\ \textless \ -4}} \right. \\ \left \{ {{ \left \{ {{x=2,x \geq&#10;-3} \atop {3x=-14,-4 \leq x \ \textless \ -3}} \right. } \atop {x=-6,x\&#10;\textless \ -4}} \right.

\left \{ {{ \left \{&#10;{{x=2,x \geq -3} \atop {x=-14/3,-4 \leq x \ \textless \ -3}} \right. } \atop&#10;{x=-6,x\ \textless \ -4}} \right

Условию раскрытия моделей соответствуют только первый и третий корни 2 и -6.

ОТВЕТ: 2 корня

ПОКАЗАТЬ ОТВЕТЫ
ishohahdh ishohahdh  29.10.2020 13:16

7/Задание № 3:

Сколько корней имеет уравнение: |x+2+|−x−4||−8=x?

|x+2+|−x−4||−8=x

|x+2+|x+4||−8=x

\left \{ {{|x+2+x+4|-8=x,x&#10;\geq -4} \atop {|x+2-x-4|-8=x,x\ \textless \ -4}} \right. \\ \left \{&#10;{{|2x+6|-8=x,x \geq -4} \atop {|-2|-8=x,x\ \textless \ -4}} \right. \\ \left \{&#10;{{ \left \{ {{2x+6-8=x,x \geq -3} \atop {-2x-6-8=x,-4 \leq x \ \textless \ -3}}&#10;\right. } \atop {2-8=x,x\ \textless \ -4}} \right.

\left \{ {{ \left \{&#10;{{2x-2=x,x \geq -3} \atop {-2x-14=x,-4 \leq x \ \textless \ -3}} \right. }&#10;\atop {2-8=x,x\ \textless \ -4}} \right. \\ \left \{ {{ \left \{ {{x=2,x \geq&#10;-3} \atop {3x=-14,-4 \leq x \ \textless \ -3}} \right. } \atop {x=-6,x\&#10;\textless \ -4}} \right.

\left \{ {{ \left \{&#10;{{x=2,x \geq -3} \atop {x=-14/3,-4 \leq x \ \textless \ -3}} \right. } \atop&#10;{x=-6,x\ \textless \ -4}} \right

Условию раскрытия моделей соответствуют только первый и третий корни 2 и -6.

ОТВЕТ: 2 корня

 

ПОКАЗАТЬ ОТВЕТЫ
ботан777 ботан777  29.10.2020 13:16

7/Задание № 4:

Назовите такое значение параметра a, при котором неравенство ax>7x+2 не имеет решений.

ax>7x+2

ax-7x>2

(a-7)x>2

Если а=7, то неравенство 0>2 не имеет решений.

Если а>7, то решения x>2/(a-7)

Если а<7, то решения x<2/(a-7)

ОТВЕТ: 7

7/Задание № 3:

Сколько корней имеет уравнение: |x+2+|−x−4||−8=x?

|x+2+|−x−4||−8=x

|x+2+|x+4||−8=x

\left \{ {{|x+2+x+4|-8=x,x&#10;\geq -4} \atop {|x+2-x-4|-8=x,x\ \textless \ -4}} \right. \\ \left \{&#10;{{|2x+6|-8=x,x \geq -4} \atop {|-2|-8=x,x\ \textless \ -4}} \right. \\ \left \{&#10;{{ \left \{ {{2x+6-8=x,x \geq -3} \atop {-2x-6-8=x,-4 \leq x \ \textless \ -3}}&#10;\right. } \atop {2-8=x,x\ \textless \ -4}} \right.

\left \{ {{ \left \{&#10;{{2x-2=x,x \geq -3} \atop {-2x-14=x,-4 \leq x \ \textless \ -3}} \right. }&#10;\atop {2-8=x,x\ \textless \ -4}} \right. \\ \left \{ {{ \left \{ {{x=2,x \geq&#10;-3} \atop {3x=-14,-4 \leq x \ \textless \ -3}} \right. } \atop {x=-6,x\&#10;\textless \ -4}} \right.

\left \{ {{ \left \{&#10;{{x=2,x \geq -3} \atop {x=-14/3,-4 \leq x \ \textless \ -3}} \right. } \atop&#10;{x=-6,x\ \textless \ -4}} \right

Условию раскрытия моделей соответствуют только первый и третий корни 2 и -6.

ОТВЕТ: 2 корня

7/Задание № 1:

Сколько чётных двузначных чисел, которые при делении на сумму цифр числа дают неполное частное 7 и остаток 3?

РЕШЕНИЕ: Пусть это число АВ=10a+b. Тогда, 10a+b=7(a+b)+3.

10a+b=7a+7b+3

3a=6b+3

a=2b+1

2b=a-1

Учитывая, что:

- а и b цифры, то есть целые числа от 0 до 9, но а не ноль, поскольку AB двузначное число

- число AB должно быть четным, то проверять нечетные b нет смысла

- остаток должен быть меньше делителя, значит минимально возможная сумма (a+b) равна 4

b=0: a=2*0+1=1 - не может быть a+b=1<4

b=2: a=2*2+1=5, число 52

b=4: a=2*4+1=9, число 94

При b=6 и более а=2*6+1=13 и более - не соответствует цифре.

ОТВЕТ: 2 числа

 

ПОКАЗАТЬ ОТВЕТЫ
Sanya339 Sanya339  29.10.2020 13:16
Уравнение имеет два корня.
Рассматриваем два случая
а)  выражение под модулем - х - 4 >= 0  (это знак больше или равно)
                                  отсюда          х=< 4
наше уравнение будет в этом случае выглядеть так
| x + 2 + (- x - 4) | - 8 = x
раскрываем скобки получаем
|- 2| - 8 = x
x = - 6
б) второй случай выражение под модулем - х - 4 < 0
    уравнение выглядит так
|х  + 2 - (-х-4)| - 8 = х

решаем его. Получаем х = 2
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра