Sinx*cosx+3cosx-3=0 решите уравнение ,

иртова иртова    2   20.05.2019 08:20    1

Ответы
hitechnic669857 hitechnic669857  13.06.2020 16:27


3 − sin x cos x + 3 cos x = −3 sin x,
3(cos x + sin x) − sin x cos x + 3 = 0.

Пусть cos x + sin x = t. Имеем:

t = √2 (½√2 cos x + ½√2 sin x) =
= √2 (sin ¼π cos x + cos ¼π sin x) = √2 sin(x + ¼π);

t² = (cos x + sin x)² = cos² x + 2 sin x cos x + sin² x =
= 1 + 2 sin x cos x, откуда sin x cos x = ½(t² − 1).

Уравнение переписывается так:

3t − ½(t² − 1) + 3 = 0,
6t − t² + 1 + 6 = 0,
t² − 6t − 7 = 0,
(t − 7)(t + 1) = 0.

Два случая.

1) t = 7 — решений нет, поскольку t = √2 sin(x + ¼π) ≤ √2;

2) t = −1, тогда √2 sin(x + ¼π) = −1,

x + ¼π = −¼π + 2πn, x = −½π + 2πn
или
x + ¼π = −¾π + 2πn, x = −π + 2πn (= π + 2πk, где k = n − 1).

ответ: −½π + 2πn, π + 2πk (k, n — целые).

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра