Чтобы найти корни, необходимо приравнять выражение к нулю. Произведение равно нулю, когда один из множителей равен нулю. Таким образом: (х-5)*(х+4)=0 x=5 и x=-4 Далее чертим координатную прямую х и отмечаем на ней получившиеся корни (светлыми/выколотыми точками). Расставляем знаки в промежутках: + - + (-4)(5)>x Так как знак в исходном неравенстве был "<" (меньше), то выбираем тот промежуток, где значения функции отрицательны (там, где знак минус на координатной прямой), то бишь: х∈(-4;5). Получившееся выражение можно записать 2-мя х∈(-4;5) или -4<x<5 В ответе записывают один из получившихся вариантов.
х - 5 < 0 х + 4 < 0
х < 5 х < - 4
если отметить это всё на координатной прямой, то ответ будет х принадлежит (-бесконечность; 5)
(х-5)*(х+4)=0
x=5 и x=-4
Далее чертим координатную прямую х и отмечаем на ней получившиеся корни (светлыми/выколотыми точками). Расставляем знаки в промежутках:
+ - +
(-4)(5)>x
Так как знак в исходном неравенстве был "<" (меньше), то выбираем тот промежуток, где значения функции отрицательны (там, где знак минус на координатной прямой), то бишь: х∈(-4;5).
Получившееся выражение можно записать 2-мя
х∈(-4;5) или -4<x<5
В ответе записывают один из получившихся вариантов.